

基于SCIEX LC-MS/MS系统对血浆中多粘菌素E1和E2检测

Determination of Polymyxin E1 and E2 in Plasma by SCIEX LC-MS/MS

刘瑞琛,崔敬文,赵祥龙,郭立海 Liu Ruichen, Cui Jingwen, Zhao Xianglong, Guo Lihai

Keywords: Polymyxin E1, Polymyxin E2, plasma

引言

多粘菌素类抗菌药物问世于20世纪50年代末,后因同样有效但更安全的新药不断问世逐渐淡出临床。20世纪80年代,随着多重耐药革兰阴性菌的增多,此类药物重新受到临床重视。多粘菌素是由多粘类芽孢杆菌产生的一组环肽类抗菌药物,目前应用于临床的有多粘菌素B和多粘菌素E,其中多粘菌素E1和E2是中国最常用的抗菌药物之一,用于治疗对其他抗菌药物均耐药的感染(如铜绿假单胞菌引起的感染),大肠杆菌性肠炎和其他药物耐药的菌痢。但多粘菌素类药物应用于临床存在以下难点:治疗窗(2 mg/L)与肾毒性浓度(> 2.3 mg/L)几乎重叠;体外实验发现多粘菌素类药物易诱导耐药,导致药物剂量成为早期临床治疗成功与否的重要因素。因此,为更好优化使用多粘菌素类药物,提高临床疗效,降低不良反应,临床药物浓度监测具有重要意义。

本方法采用蛋白沉淀法提取,结合SCIEX液相色谱串联质谱系统,以多粘菌素B为内标,对血浆中多粘菌素E1和E2进行精准定量及分析。

实验部分

1、样品前处理

准确量取100 μ L血清样品于1.5 mL塑料离心管中,加入10 μ L内标混合标准工作液(2.2 μ g/mL)和190 μ L乙腈,涡旋混匀1 min,14000 r/min离心10 min,精密吸取上清液50 μ l,加纯水100 μ l,充分混匀,待LC-MS/MS分析。

2、检测方法

色谱条件: 色谱柱: 飞诺美Kinetex® C18 (2.6 μm, 2.1 × 50 mm) 流动相: A: 含0.2%甲酸、5 mmol/L甲酸铵的水溶液, B:

含0.2%甲酸乙腈溶液,柱温: 40[℃],进样量: 10 μ L,梯度洗脱,液相梯度见表1。

表1. 液相梯度洗脱条件

时间(min)	A(%)	B(%)
0.0	90	10
1.0	90	10
1.1	5	95
3.0	5	95
3.1	90	10
5.0	90	10

质谱条件:

离子源: ESI源 Q1: [M+2H]2+

气帘气 CUR: 20 psi 碰撞气 CAD: medium

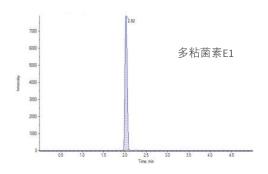
雾化气 GS1: 50 psi 辅助气 GS2: 50 psi

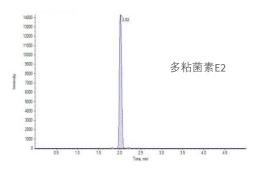
IS电压: +5500 V 源温度 TEM: 550℃

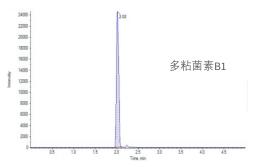
质谱参数见表2

表2. 目标组分和内标物质的质谱参数

中文名	Q1	Q3	Dwell time	ID	DP	CE
多粘菌素E1	585.5	100.9	50.0	E1-1*	93.0	64.0
	585.5	576.4	50.0	E1-2	88.0	31.0
多粘菌素E2	578.2	101.0	50.0	E2-1*	117.0	60.0
	578.2	227.0	50.0	E2-2	115.0	28.0
多粘菌素B1	602.4	241.1	50.0	B1-1	115.0	35.0
	602.4	261.2	50.0	B1-2	120.0	37.0


* 定量离子


RUO-MKT-02-14836-ZH-A p 1



结果与讨论

以未服药的人血浆为基质,考察了多粘菌素E1、E2在线性范围最低点和多粘菌素B1的灵敏度和峰形情况,结果表明化合物灵敏度高、峰形良好,见图1。

图1. 血浆基质中多粘菌素E1(0.24 μg/mL)、E2(0.41 μg/mL)和B1 (0.37μg/mL)色谱图

为了考察该方法重现性及准确性,分别进行多粘菌素E1和E2的精密度和准确度方法验证,表3显示,不同浓度水平的批内准确度为95.83~106.57%,RSD为5.54~9.67%,精密度良好,满足方法学要求;批间准确度为98.02%~109.17%,RSD为3.14%~8.14%,精密度良好,满足方法学要求。

表3. 批内、批间准确度和精密度实验结果

化合物 名称	理论	批间		批内(n=6)			
	浓度 µg/mL	平均值 µg/mL	RSD %	准确 度%	平均值 µg/mL	RSD %	准确 度%
多粘菌 素E1	0.24	0.25	3.14	104.17	0.23	9.34	95.83
	0.70	0.72	6.03	102.86	0.68	6.89	97.14
	2.02	1.98	6.23	98.02	1.94	9.08	96.04
	3.10	3.14	5.93	101.29	3.00	6.30	96.77
多粘菌 _ 素E2	0.41	0.46	8.14	112.20	0.40	9.64	97.56
	1.20	1.31	4.20	109.17	1.27	5.54	105.83
	3.47	3.56	5.00	102.59	3.66	9.67	105.48
	5.33	5.66	7.37	106.19	5.68	5.57	106.57

以未服药人血浆为基质,配制混合标曲溶液,按上述前处理步骤进行处理,制作标准工作曲线(浓度单位均为 μ g/mL)。表4显示,多粘菌素E1和E2在0.24-4.03 μ g/mL、0.41-6.94 μ g/mL均具有良好的线性,其回归系数r > 0.999。

表4. 人血浆基质标准曲线

系列	多粘菌素E1	多粘菌素E2
STD1	0.24	0.41
STD2	0.37	0.63
STD3	0.63	1.08
STD4	0.96	1.65
STD5	1.55	2.67
STD6	2.52	4.33
STD7	4.03	6.94
线性方程	Y=1.54803X-0.009	Y=1.43472X+0.04162
相关系数R	0.99992	0.99918

总结

本方法使用SCIEX Triple Quad™系统建立血浆中多粘菌素E1和E2测定的LC-MS/MS方法,并对方法的线性、准确度和精密度进行了系统的方法学验证。该方案可以满足临床患者血浆中多粘菌素类药物浓度监测的需求,并且在临床治疗早期为个体化用药剂量提供方法参考和数据支持。

RUO-MKT-02-14836-ZH-A p 2

参考文献

- [1] Liu X, Yu Z, Wang Y, Wu H, Bian X, Li X, Fan Y, Guo B, Zhang J. Therapeutic drug monitoring of polymyxin B by LC-MS/MS in plasma and urine. Bioanalysis. 2020 Jun;12(12):845-855.
- [2] Dotsikas Y, Markopoulou CK, Koundourellis JE, Loukas YL. Validation of a novel LC-MS/MS method for the quantitation of colistin A and B in human plasma. J Sep Sci. 2011 Jan;34(1):37-45.

仅限专业展会等使用、仅向专业人士提供的内部资料。

SCIEX临床诊断产品线仅用于体外诊断。仅凭处方销售。这些产品并非在所有国家地区都提供销售。获取有关具体可用信息,请联系当地销售代表或查阅https://sciex.com.cn/diagnostics。所有其他产品仅用于研究。不用于临床诊断。本文提及的商标和/或注册商标,也包括相关的标识、标志的所有权,归属于AB Sciex Pte. Ltd. 或在美国和/或某些其他国家地区的各权利所有人。

© 2022 DH Tech. Dev. Pte. Ltd. RUO-MKT-02-14836-ZH-A

北京分公司 北京市朝阳区酒仙桥中路24号院 1号楼5层 电话: 010-5808-1388 传真: 010-5808-1390

全国咨询电话: 800-820-3488,400-821-3897

上海公司及中国区应用支持中心 上海市长宁区福泉北路518号 1座502室

电话: 021-2419-7200 传真: 021-2419-7333 官网: sciex.com.cn 广州分公司 广州市天河区珠江西路15号 珠江城1907室 电话: 020-8510-0200 传真: 020-3876-0835

官方微信: SCIEX-China